Historical Note
Main Fields of Research Activities
Directorate
Scientific Council
Persons
Contacts
Department of Law
Department of Philosophy
Udmurt branch of the Institute
Cathedra of philosophy
Cathedra of foreign languages
Search by Authors
Search of Publications
2025 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 and earlier
About
Search by Authors
Search by Articles
2024 Vol. 24
2023 Vol. 23
2022 Vol. 22
2021 Vol. 21
2020 Vol. 20
2019 Vol. 19
2018 Vol. 18
2017 Vol. 17
2016 Vol. 16
2015 Vol. 15
2014 Vol. 14
2013 Vol. 13
2012 Issue 12
2011 Issue 11
2010 Issue 10
2009 Issue 9
2008 Issue 8
2007 Issue 7
2005 Issue 6
2004 Issue 5
2003 Issue 4
2002 Issue 3
2001 Issue 2
1999 Issue 1
 
 Research Subdivisions / Department of Law / A Logically Formalized Axiomatic Epistemology System Σ + C and Philosophical Grounding Mathematics as a Self-Sufficing System  Print Version   Site Map     Language Switch to Russain Switch to English
Год науки
Наука и университеты

Год науки
 
Department of Law
Department of Philosophy
Udmurt branch of the Institute

A Logically Formalized Axiomatic Epistemology System Σ + C and Philosophical Grounding Mathematics as a Self-Sufficing System

Lobovikov V.O.
A Logically Formalized Axiomatic Epistemology System Σ + C and Philosophical Grounding Mathematics as a Self-Sufficing System // Mathematics.– 2021.– Vol. 9. No. 16.– DOI: 10.3390/math9161859.
WoS  Scopus  РИНЦ 

The subject matter of this research is Kant’s apriorism underlying Hilbert’s formalism in the philosophical grounding of mathematics as a self-sufficing system. The research aim is the invention of such a logically formalized axiomatic epistemology system, in which it is possible to construct formal deductive inferences of formulae—modeling the formalism ideal of Hilbert — from the assumption of Kant’s apriorism in relation to mathematical knowledge. The research method is hypothetical–deductive (axiomatic). The research results and their scientific novelty are based on a logically formalized axiomatic system of epistemology called Σ + C, constructed here for the first time. In comparison with the already published formal epistemology systems X and Σ, some of the axiom schemes here are generalized in Σ + C, and a new symbol is included in the object-language alphabet of Σ + C, namely, the symbol representing the perfection modality, C: “it is consistent that…”. The meaning of this modality is defined by the system of axiom schemes of Σ + C. A deductive proof of the consistency of Σ + C is submitted. For the first time, by means of Σ + C, it is deduc-tively demonstrated that, from the conjunction of Σ + C and either the first or second version of Gödel’s theorem of incompleteness of a formal arithmetic system, the formal arithmetic investigated by Gödel is a representation of an empirical knowledge system. Thus, Kant’s view of mathematics as a self-sufficient, pure, a priori knowledge system is falsified.

Full text>>

Дизайн и программирование
N-Studio беременность, мода, красота, здоровье, диеты, женский журнал, здоровье детей, здоровье ребенка, красота и здоровье, жизнь и здоровье, секреты красоты, воспитание ребенка православные знакомства, православный сайт творчeства, православные рассказы и стихи рождение ребенка,пол ребенка,воспитание ребенка,ребенок дошкольного возраста, дети дошкольного возраста,грудной ребенок,обучение ребенка,родить ребенка,загадки для детей,здоровье ребенка,зачатие ребенка,второй ребенок,определение пола ребенка,будущий ребенок
© 2006-2025
Institute of Philosophy and Law, Ural Branch of the Russian Academy of Sciences